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Abstract 

In today's AI-driven era, computer vision, including autonomous driving, robotics, and healthcare, is prevalent. However, 

acquiring ample data while managing resources and privacy constraints is challenging. This article proposes a solution: 

synthetic data generation. We use CAD software to craft intricate 3D models, process them in Blender, and evaluate 

quality using metrics like Structural Similarity and PSNR (Peak Signal to Noise Ratio). Synthetic data achieves up to 

90% similarity with real data and an average PSNR of 21dB. Our method offers a streamlined, dependable approach for 

enhancing computer vision, especially in object detection, addressing data acquisition challenges. 
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1. Introduction 

Data is paramount in today's world, permeating every 

facet of daily life. Extensive research centers around ar-

tificial intelligence technologies, where data's pivotal 

role cannot be overstated. Deep learning and machine 

learning models, devoid of data, lack the essential es-

sence. Industries heavily reliant on data encompass fi-

nance, healthcare, government, autonomous systems, and 

robotics. Data types are categorized as Image, Text, 

Sound, Signal, Physical, Biological, Anomaly, and Mul-

tivariate, each serving unique applications. Our primary 

focus is on Image data, vital in machine learning for com-

puter vision applications, including object detection, fa-

cial recognition, and multi-label classification [1]. 

Numerous datasets are accessible online to facilitate 

various tasks like object detection. However, it's crucial 

to acknowledge that not all available datasets are suitable 

for specific purposes, particularly when the intended ap-

plication differs significantly from the dataset's inherent 

characteristics. Therefore, it becomes imperative when 

the ability to gather data gets challenging because the 

data of our interest and also for the application required 

was never recorded or does not exist. For instance, at-

tempting to utilize datasets primarily designed for cate-

gorizing flower species to train a deep learning model for 

predicting car attributes is impractical due to the funda-

mental dissimilarity between flowers and cars. In such 

circumstances, it becomes imperative to initiate the data 

collection process from the ground up, tailored precisely 

to the target application. In the case mentioned, this in-

volves the meticulous acquisition of car-related data, en-

suring that the necessary resources are in place to gather, 

annotate, and curate the data effectively. This meticulous 

approach is essential to align the dataset with the specific 

requirements and nuances of the intended application, 

thus optimizing the model's performance.  

Blender graphics software, due to its versatile capa-

bilities is employed as a pivotal instrument to generate 

the data automatically without costing time management 

of resources. This approach is adapted when there is no 

data available nor it has been captured for the desired ap-

plication. The synthetic data which reflects realism with 

the actual data is used for training of machine learning 

models along with libraries such as fastai [2]. Also, there 

are applications such as [3,4] Finite Element Method, 

where simulations with the help of Blender is incorpo-

rated. 

1.1 Purpose and Focus 

It is readily apparent that data is a fundamental compo-

nent, particularly within the domain of machine learning 

models, where the outcome's reliability is intrinsically 

tied to the quantity and quality of the data utilized, along-

side the precision of parameter optimization which in 

turn, results in the attainment of precise outcomes in the 

context of detection and recognition tasks. Nonetheless, 

certain applications may find themselves in the predica-

ment of inadequate or entirely absent relevant data, 

thereby necessitating the initiation of data generation 

processes from scratch. This endeavor is resource-inten-

sive and time-consuming. The disadvantage of alterna-

tive methods, which Blender 3D aims to address, could 

be the deficiency or nonexistence of essential data. Tra-

ditional methods may struggle to provide sufficient and 

diverse datasets for training models or conducting exper-

iments. This limitation can hinder the progress of data-

driven initiatives, impacting the quality and robustness of 

the results. Blender 3D, in this context, emerges as a val-

uable solution by effectively resolving the issues associ-

ated with data scarcity or absence. It offers a versatile 

platform for generating synthetic data, filling the gaps 

left by traditional methods. 
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The scope of datasets generated through Blender signifi-

cantly impacts their realism. While the conventional use 

of 3D cameras for data capture ensures reliability, it also 

entails substantial resource costs, especially in uncontrol-

lable scenarios. Hence, in this section, we conducted a 

comparative analysis between data obtained from a 3D 

camera, such as Azure Kinect, and data generated 

through Blender. The Kinect sensor, as a development kit 

[5], serves as a computer add-on, establishing a connec-

tion with the Microsoft Azure cloud. It harnesses ma-

chine intelligence-based sensors to facilitate computer vi-

sion and speech models. The kit encompasses a 12-meg-

apixel RGB lens, a 1-megapixel depth camera for body 

tracking, a 360-degree seven-microphone array, and a 

position sensor. The depth sensor, initially introduced in 

2018 ISSCC, forms the core component of this sensor, 

which is widely applied in vision applications and exhib-

its notable performance [6,7]. To evaluate the quality of 

generated data, we conduct a comparative analysis be-

tween rendered images from Blender and real data cap-

tured by the Kinect Azure. Our data acquisition involves 

recording wrench frames at a 1080p resolution, aligning 

the intrinsic of Blender's virtual camera with the real-

world setup for rendering the model. 

In this experimental framework, synthetic data genera-

tion is facilitated through the utilization of a Computer-

Aided Design (CAD) model, a versatile tool adept at cre-

ating, modifying, and visually representing intricate en-

gineering components, commonly referred to as 3D mod-

els. The transformation and processing of these models 

are achieved through the utilization of 3D graphics soft-

ware, with Blender serving as the focal point within this 

research due to its open-source nature and the presence 

of a pre-existing scripting feature that enhances the ver-

satility of Python programming. 

The central hypothesis underpinning this endeavor re-

volves around the objective of producing synthetic data 

that closely mirrors real-world counterparts in terms of 

realism. To attain this goal, it is postulated that the virtual 

camera employed within Blender must meticulously fo-

cus on the object of interest from a multitude of perspec-

tives, encompassing various lighting conditions for the 

rendering process. Furthermore, critical 3D object model 

properties, including but not limited to texture and color, 

must be addressed. This approach is designed to ensure 

that the generated synthetic data is indistinguishable from 

authentic data, contributing to the reliability and efficacy 

of subsequent machine learning or computer vision ap-

plications. 

2. Materials and Methods 

This section provides a vivid depiction of the conducted 

experiments, encompassing a range of scenarios and de-

tailing the primary objects employed as integral compo-

nents of the research investigation. 

2.1 Literature 

Synthetic data generation encompasses various ap-

proaches, and one prominent method involves the utili-

zation of neural networks. Within this domain, several 

techniques have emerged, such as Variational Auto-En-

coder (VAE) which was trained on MNIST dataset pro-

duces a continuous and structured latent space which is 

useful for image construction [8], Generative Adversarial 

Networks (GAN) with a U-Net based architecture for Bi-

omedical Image Segmentation and conditional adversar-

ial networks for image to image translation [9,10] and 

Stable Diffusion [11] which is a powerful, open source 

text to image generation model. It includes XLA (Accel-

erated Linear Algebra) and mixed precision support that 

results in state-of-the-art generation speed. Each of these 

techniques carries distinct significance in the pursuit of 

producing synthetic data that closely emulates authentic 

data, thus contributing to the realism and quality of the 

generated datasets. 

The concept of generating data through the utilization of 

CAD models has previously been explored, as exempli-

fied in existing literature, such as [12] which presents an 

end-to-end framework. This framework holistically sim-

ulates the intricate functioning of devices, concurrently 

generating data through the incorporation of 3D models. 

It comprehensively models essential parameters, includ-

ing sensor-induced noise, material reflectance, and sur-

face geometry. Furthermore, it extends its scope to assess 

the influence of these data generation processes on the 

training of neural networks for diverse recognition tasks. 

In [13], a novel approach to image generation, reliant 

upon CAD models, is introduced, and it is facilitated 

through the utilization of Computer Graphics Software 

(CGS). This software serves as the essential tool for ren-

dering 3D models representing the objects targeted for 

detection. Among the available CGS options, such as 

Blender and Unity, Blender emerged as the more effec-

tive choice during the course of this study. It is worth not-

ing that, besides surface texture, the image generation 

process can be entirely automated, encompassing the crit-

ical aspect of labeling. 

2.2 Computer Aided Design (CAD) 

Diverse formats are available for representing 3D mod-

els, including STL, OBJ, FBX, and DAE, each tailored 

to specific applications and industry requirements. 

Within the context of this experimental study, the utiliza-

tion of OBJ format models was chosen due to their prev-

alence in various industrial sectors and their consistent 

compatibility with a broad spectrum of software environ-

ments. This format ensures seamless integration and de-

pendable interpretation by the software systems em-

ployed. In numerous domains, including automotive, aer-

ospace, industrial engineering, and dental prosthetics, 

Computer-Aided Design (CAD) stands as a pivotal and 

irreplaceable industrial art. Consequently, CAD tools 

find extensive usage among engineers and designers, es-

pecially in the context of component design and develop-

ment [14]. To exemplify and validate our proposed meth-

odology, we opted to employ 3D models of open-ended 

and combined wrenches. These models can be readily 

generated using an array of CAD software applications, 

such as Autodesk, Solid works, Creo, Catia, and others, 
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underscoring the universality and adaptability of the ap-

proach across diverse research and engineering domains. 

2.3 Method 

The proposed end-to-end methodology predominantly 

revolves around the incorporation of CAD models within 

the Blender environment. This process entails detailed 

modifications and adjustments to the CAD model to align 

it with the specified lighting conditions. Furthermore, 

within the Blender viewport, the pre-existing virtual cam-

era is directed to focus on the designated object of inter-

est, in this instance, the open-end and combined wrench. 

The camera's pivotal role lies in rendering the scenes 

within the Blender interface. When a camera is active, it 

triggers the visibility of object and editing setup panels. 

The selection of the camera lens plays a critical role in 

determining the portrayal of the 3D scenes as they are 

transposed into 2D images, influencing the visual out-

come of the rendered scenes. 

 

Blender: employs an intrinsic Python interpreter [15], 

which is active upon its launch and proves essential for 

both its internal utilities and user interface scripts. This 

interpreter grants access to Blender's data, classes, and 

functions through a suite of embedded Python modules. 

To facilitate the effective execution of scripts that interact 

with Blender data, it is imperative to import all requisite 

modules. Transformations are indispensable for data aug-

mentation, including random rotation, scaling, and di-

mension adjustments. In this study, we specifically uti-

lized rotation and dynamic color modification during ex-

ecution. Euler rotation mode and the Principled BSDF 

[16] play key roles in introducing random color varia-

tions, consolidating multiple layers into a single node.  

The color transformation incorporates a saturation 

value within the range of (0, 1), wherein values less than 

0 yield grayscale images, and values exceeding 1 inten-

sify saturation [17]. Subsequently, the rendering process 

transpires, converting the 3D scene into a 2D plane. 

Blender provides rendering engines such as Cycles and 

EEVEE, each bearing unique significance in the render-

ing phase. Furthermore, the introduction of noise during 

data generation assumes a crucial role, serving to assess 

the deep learning model's performance. Noise not only 

challenges the model's feature recognition but also en-

hances the dataset by introducing distinctive characteris-

tics, fostering more robust learning. 

 

 
Figure 1: Pipeline for generating Synthetic data 

Structural Similarity Index: We employ the Structural 

Similarity Index (SSIM) to assess the resemblance be-

tween the reference image from Kinect and the rendered 

image from Blender. SSIM quantifies disparities between 

sample and comparison images by evaluating values for 

relevant pixels. Our focus centers on human visual per-

ception, which adeptly discerns structural information in 

scenes to distinguish image details. SSIM dissects three 

essential components: Luminance, Contrast, and Struc-

ture, resulting in a comparison score within the range of 

(-1, 1). In this scale, a score of -1 signifies dissimilarity 

between images, while a score of +1 indicates similarity. 

Therefore, a metric that aligns with this pattern proves 

more effective for tasks involving comparisons between 

real and generated images [18,19]. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2 𝜇𝑥 𝜇𝑦+𝐶1)(2 𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 (1)  

where 𝝁𝒙, 𝝁𝒚 is the pixel sample mean of x and y. 𝝈𝒙
𝟐, 𝝈𝒚

𝟐 

is the variance of x and y. 𝝈𝒙𝒚 covariance of x and y. 

𝑪𝟏 = (𝒌𝟏 𝑳)𝟐, 𝑪𝟐 = (𝒌𝟐 𝑳)𝟐are two variables to stabilise 

the division with weak denominator. L is the dynamic 

range of pixel values and 𝒌𝟏 = 𝟎. 𝟎𝟏, 𝒌𝟐 = 𝟎. 𝟎𝟑 a small 

constant by default. 

Peak Signal to Noise Ratio: PSNR, measures the rela-

tionship between a signal's maximum power [20] and the 

power of degrading noise, a factor that can compromise 

the precision of signal representation. Given the exten-

sive dynamic range of many signals, PSNR is typically 

represented in a nonlinear manner using the decibel sys-

tem. It finds frequent application in evaluating the quality 

of reconstruction, particularly in scenarios involving the 

compression of images and videos. Significantly, PSNR 

offers valuable insights into how humans perceive the 

quality of reconstructed data during the assessment of 

compression techniques. 

𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10
(𝑀𝐴𝑋𝑓)

√𝑀𝑆𝐸
  (2)  

where 𝑀𝐴𝑋𝑓 represents the highest signal level within 

the original image, and MSE [21] denotes the Mean 

Squared Error, which quantifies the dissimilarity in pixel 

values between the real image and the rendered image. In 

essence, it measures the disparity between the pixel val-

ues of these two images. A higher PSNR corresponds to 

enhanced image quality post-reconstruction. It's worth 

noting that PSNR becomes undefined when attempting to 

compute the MSE between nearly identical images, as the 

MSE value approaches zero, leading to a division by 

zero. 

3. Results 
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Figure 2: Structural Similarity Index 

In [22], a comparative analysis was undertaken to assess 

the metrics concerning image quality reconstruction. Our 

examination primarily hinges on the evaluation of Struc-

tural Similarity (SSIM) and Peak Signal-to-Noise Ratio 

(PSNR) values. PSNR is characterized by a range extend-

ing to infinity, with higher PSNR values indicative of su-

perior image quality. To guide our analysis, we estab-

lished a threshold value of 20 dB to delineate the meas-

urement range. In evaluating the reference and rendered 

images, we observed a PSNR of 22.01 dB for the Silver 

wrench and 20.82 dB for the Black wrench. Similarly, for 

SSIM, the resulting images exhibited a 91% similarity to 

the original image for the Silver wrench and 92% for the 

Black wrench, respectively. The examination of metrics, 

encompassing Structural Similarity and Peak Signal-to-

Noise Ratio, in the course of the experiments is executed 

as elaborated here. 

 
Figure 3: Peak Signal to Noise ratio 

Prior to processing synthetic data in Blender, the utiliza-

tion of a Kinect sensor was integral for capturing authen-

tic wrench images depicting various combinations, as il-

lustrated in the figure below. This approach enabled the 

acquisition of genuine visual representations that served 

as the basis for subsequent data manipulation within 

Blender. The processed data derived from Blender exhib-

ited notable promise, closely resembling the characteris-

tics of real-world data. This resemblance was crucial in 

ensuring the authenticity and accuracy of the synthetic 

data generated through the processing pipeline. 

 

 
Figure 4: Real data prior to undergoing processing in Blender  

 

 
Figure 5: Synthetic data generated using Blender 

 

Comparative analysis between the real and synthetic 

datasets was conducted using metrics such as Structural 

Similarity Index and Peak Signal-to-Noise Ratio. These 

evaluation methods provided valuable insights by 

quantifying the similarities and differences between the 

authentic and synthetic data. The widespread application 

of SSIM and PSNR in this context has solidified their 

significance as essential tools for assessing data fidelity 

and reliability across various industries and research 

domains. 

4. Discussion 

The primary objective of this experiment is to address the 

challenges associated with procuring authentic data, of-

ten hindered by factors that impose significant time and 

financial costs. In the context of employing computer 

graphics software such as Blender, it is crucial to metic-

ulously consider physical attributes, including aspects 

like lighting conditions and pixel irregularities, which are 

integral to generating high-fidelity data. These physical 

property issues become particularly pronounced with the 

increasing complexity of 3D data, and Blender offers a 

straightforward solution for managing them. 

      By diligently accounting for all environmental factors 

and employing a configuration akin to that of a real-

world camera, the resulting images attain a heightened 

level of realism. This meticulous approach enables us to 

create images that closely emulate real-world counter-

parts. Moreover, it is imperative to recognize the pres-

ence of biases in artificial data, as they have the potential 

to introduce errors, particularly in scenarios involving the 

training of neural networks. This consideration becomes 

especially critical in fields where privacy is of utmost im-

portance, such as the medical industry, where data integ-

rity must be maintained without compromise. The funda-

mental drawback of PSNR measure is that it only consid-

ers numerical comparisons and ignores all levels of ge-

netic aspects of the human visual system, including the 

Structural Similarity Index (SSIM). 

 

Data Advantages Disadvantages 
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Real  

-Increased acces-

sibility 

-Information up 

to date 

-Actual situa-

tions 

-Data quantity 

-Difficult to 

record frames 

-Perfect annota-

tion 

-Privacy 

Synthetic  

-Data size 

-Perfectly anno-

tated 

-Full user con-

trolled 

-Multispectral 

-Privacy 

-Lightning con-

ditions 

-Input data is 

vital 

-Anomalies can 

be missing 

Table 1: Comparison between Real data and Synthetic data 

Utilizing this method for data generation is essential 

due to Blender's adaptability and user-driven nature. It 

allows for the manipulation of CAD models across vari-

ous formats. Its cost-effectiveness renders it suitable for 

numerous applications and experiments, requiring no 

substantial capital investment. The incorporation of a so-

phisticated rendering engine produces high-fidelity im-

ages comparable to real data. Blender's complete custom-

izability empowers users to configure diverse scenarios 

and parameters aligning with the research's specific di-

rection. There are other methods such as GAN and VAE 

that predominantly uses Neural Network to generate syn-

thetic data. However, there are limitations and also ben-

eficial facts with these two approaches. 

In certain scenarios involving the utilization of GANs/ 

VAEs to generate synthetic data, specific considerations 

should be considered. GANs may encounter issues such 

as collapsing when confronted with limited data variety, 

thereby failing to encompass the entirety of the data dis-

tribution. Training these models can pose challenges due 

to their intricate and volatile characteristics, which heav-

ily rely on meticulous hyperparameter tuning. Moreover, 

interpreting the acquired representations of the data be-

comes challenging due to the inherent black box nature 

of these models. 

 

Method Positives Pitfalls 

Our Method 

(Blender)  

-Versatility 

-User Control 

-Cost-Effective 

-Realistic render 

-Customization 

-Complexity 

-Resource in-

tensive 

GAN/ VAE  

-Learned repre-

sentatives 

-Data Augmen-

tation 

-Unsupervised 

learning process 

-Mode collapse 

-Challenges 

during training 

-Quality control 

-Interpretability 

Table 2: Strengths and weakness between proposed method and other 

methods 

5. Conclusions 

It is evident that conventional data collection methods 

yield higher-quality photos when deployed in real-world 

scenarios. However, the manual annotation process for 

each image, tailored to the end user's specific object of 

interest, can be resource-intensive and time-consuming.  

•    In such cases, 3D graphics software like Blender 

emerges as a pragmatic solution to mitigate 

these challenges, enabling the generation of 

photorealistic samples.  

•    These synthetic samples find valuable applica-

tion in training convolutional neural networks, 

which heavily rely on high-quality data.  

•    A notable advantage of employing Blender lies 

in its accessibility, as it allows for the capture of 

not only RGB frames but also depth properties 

of the model, offering a comprehensive dataset. 

Creating synthetic datasets using Blender presents a su-

perior approach due to its exceptional capacity for precise 

user control and extensive customization. This platform 

effectively addresses the aspects of realism and high-

quality image generation through its advanced rendering 

engines. The ability to annotate ground truth and craft do-

main-specific data stands out as pivotal advantages when 

considering Blender for dataset generation. One of the 

notable strengths of Blender lies in its capability to offer 

diversified datasets, consequently mitigating the risk of 

overfitting in machine learning models. Unlike the com-

plexity associated with Generative Adversarial Networks 

(GANs) and Variational Autoencoders (VAEs), Blend-

er's efficiency in managing both time and cost becomes 

evident, particularly when the need arises to gather vast 

volumes of data. Furthermore, utilizing Blender elimi-

nates concerns surrounding data privacy, making gener-

ated data readily available for research purposes. Its ver-

satility and accessibility enhance the suitability of 

Blender for various scientific and research endeavors. By 

leveraging Blender's capabilities, researchers and practi-

tioners can benefit from high-quality, diverse datasets 

while circumventing privacy issues, ultimately contrib-

uting to advancements in machine learning and data-

driven research. 

 

Wrench Data SSIM PSNR 

Silver  0.91 22.01 

Black  0.92 20.82 

Table 3: Evaluation score between Silver and Black wrench 

6. Future Scope 

The successful demonstration of generating synthetic 

datasets whilst using Blender tool produced the realistic 

data throughout the experiment. However, there are po-

tential further steps to be considered to mimic the data as 

real as possible which is application specific. Some of the 

factors that helps in tuning this process such as, examine 

the critical parameters such lightning conditions and in-

put data quality within the environment. This involves 

conducting experiments to understand the possible vari-

ations that impact the data’s fidelity and applicability. 
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Refinement in rendering process is also critical to reduce 

data omissions and ensure completeness. It involves 

changing rendering parameters, improve algorithm and 

also other rendering engines. There is a scope to explore 

about other data augmentation techniques which plays a 

pivotal role in enhancing the generalization capability of 

neural network trained and validated on the data created. 

Investigation of Transfer learning strategy where the 

characteristics learned from synthetic data to real world 

scenario. This involves domain adaptation techniques to 

bridge the gap between real and fake data. The assess-

ment metrics and evaluation methodologies can be sub-

stantially improved to quantify the quality and realism of 

synthetic data. The application of synthetic dataset is 

beneficial in the field of Autonomous vehicles such that 

simulating diverse driving scenarios, Medical Imaging 

for diagnosis and Robotics where we can create simu-

lated environment for training and testing. 
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