
Fachhochschule Ravensburg-Weingarten / Utah State University

Cooperative Problem Solving With a
Distributed Agent System -

Swarm Intelligence

Diplomarbeit / Thesis

Fachbereich Angewandte Informatik
Fachhochschule Ravensburg-Weingarten

Doggenriedstraße, 88250 Weingarten

und / and

Center for Self-Organizing and Intelligent Systems (CSOIS)
Dept. of Electrical and Computer Engineering

Utah State University, Logan, Utah 84322-4160, USA

vorgelegt von / presented by: Fernando Buck
Zweierweg 5
88250 Weingarten

Matrikel-Nr / matriculation number: 12817

Erstbetreuer / first supervisor: Prof. Dr. rer.nat. Wolfgang Ertel
Zweitbetreuer / second supervisor: YangQuan Chen, PhD

Abgabetermin / closing date: 30.11.2005 / 11-30-2005

Abstract

 I

Abstract
In this thesis a swarm intelligent approach for controlling and coordinating a multi-
agent system is studied. Considering an example where bodyguard agents have
to protect one or more VIP agents, it is shown that the swarm intelligent approach
can be a flexible and robust way to control a multi-agent system.

Contents

 II

Contents

Abstract ... I
Contents ... II
List of Figures.. III
List of Code Examples .. IV
1 Introduction .. 1
2 Swarm Intelligence... 2

2.1 Social Insects... 2
2.2 Self-Organization ... 6
2.3 Stigmergy... 8
2.4 An Example from Nature and its Application.. 8

2.4.1 Ant Foraging.. 8
2.4.2 Solving the Traveling Salesman Problem with Artificial Ants......... 12

2.5 Telecommunication Applications ... 14
2.6 Other Swarm-Based Applications .. 14
2.7 Summary ... 15

3 Bodyguard Scenario... 17
3.1 Scenario Details... 17
3.2 Simulation Environment ... 17
3.3 Agent Behavior Rules .. 18

3.3.1 Finding the VIP.. 19
3.3.2 Following a VIP in a Given Distance ... 22
3.3.3 Distributing Evenly Around (Encircling) a VIP................................ 28
3.3.4 Further Improvement of the Bodyguard Behavior.......................... 33
3.3.5 Protecting More Than One VIP ... 36

4 Results and Conclusions.. 39
References ... V
Appendix .. VII

A Appendix 1: Complete NetLogo Code of Bodyguard Version 1 VII
B Appendix 2: Complete NetLogo Code of Bodyguard Version 2 XII

List of Figures

 III

List of Figures

Fig. 2-1 Leafcutter Ants Bringing Back Cut Leaves to the Nest.......................... 2
Fig. 2-2 Nest Building in the Neotropical Wasp Polybia Occidentalis 3
Fig. 2-3 Nest of a Parachartergus Wasp Species... 4
Fig. 2-4 Macrotermes Mound ... 5
Fig. 2-5 Binary Bridge Experiment.. 9
Fig. 2-6 Usage of the Two Branches in Percent ... 9
Fig. 2-7 Bridge Experiment with Unequally Large Branches 10
Fig. 2-8 Simulation of Ant Foraging .. 11
Fig. 2-9 Solution of a TSP Problem Found by AS .. 13
Fig. 3-1 Screenshot of a NetLogo Simulation ... 18
Fig. 3-2 Braitenberg Vehicle, Type 2 .. 20
Fig. 3-3 Braitenberg Vehicle, Type 3 .. 23
Fig. 3-4 The Different Thresholds and Zones of Smell Around a VIP............... 24
Fig. 3-5 Simulation Screenshot with Bodyguard First Attempt.......................... 27
Fig. 3-6 Self-Organizing Physical System- Initial Situation............................... 28
Fig. 3-7 Self-Organizing Physical System in Stable State 29
Fig. 3-8 The Different Thresholds and Zones for the Bodyguard Version 1 30
Fig. 3-9 Simulation Run with Bodyguard Version 1 .. 32
Fig. 3-10 Thresholds and Zones for Bodyguards Version 2 33
Fig. 3-11 NetLogo Simulation of Bodyguards Version 2................................... 36
Fig. 3-12 NetLogo Simulation with 3 VIPs and 15 Bodyguards 37

List of Code Examples

 IV

List of Code Examples

Code Example 1 Pseudo Code for Approaching a VIP 21
Code Example 2 NetLogo Code for Approaching a VIP................................... 21
Code Example 3 Pseudo Code for Approaching a VIP and Stopping When Close

Enough .. 22
Code Example 4 NetLogo Code for Approaching a VIP and Stopping When Close

Enough .. 22
Code Example 5 Pseudo Code of Bodyguard First Attempt............................. 25
Code Example 6 NetLogo Code of Bodyguard First Attempt 26
Code Example 7 Pseudo Code of Bodyguard Version 1.................................. 31
Code Example 8 Pseudo Code of Bodyguard Version 2.................................. 35

Introduction

 1

1 Introduction
This thesis discusses the topic of cooperative problem solving with a distributed
agent system by using a rather new approach called swarm intelligence. Swarm
intelligence is an interdisciplinary research topic that is highly inspired by observa-
tions of the behavior of social insect colonies and by other observations from biol-
ogy. It is a bottom-up-approach: simple actions, which are carried out by a typically
huge amount of agents, emerge into a complex group behavior. A general intro-
duction is given in 2, starting with observations from nature. By observing social
insect colonies (2.1), several questions arise: What is what governs there, is there
anybody in charge? How does cooperation on the group level arise from interac-
tions of the individuals? We will see that self-organization and stigmergy are the
basic ingredients that let individual behaviors emerge into a collective group be-
havior (2.2, 2.3). It is shown that by analyzing and modeling the behavior of social
insect colonies, knowledge can be extracted that can be used to solve distributed
problems. As an example the foraging behavior of ants is studied (2.4.1), and with
the principles that can be learned from this example the Traveling Salesman Prob-
lem is solved (2.4.2). It is only naturally that an efficient way to solve the Traveling
Salesman Problem could also be a suitable approach to solve telecommunication
application problems (2.5). In 2.6 a short summary of current and future swarm-
based applications is given. In 2.7 the swarm intelligent approach is summarized
by pointing out the pros and cons of this approach.

The swarm intelligent approach is then applied to a scenario where bodyguard
agents protect VIP agents. It is shown that the bodyguard agents can achieve that
by using only local information and without communicating with each other. To
verify the proposed behavior rules, NetLogo simulations are done and the results
of these simulations are presented. In 3.1 the details of the envisaged scenario are
given. In 3.2 a simulation environment called NetLogo is presented, in which all
the simulations were done.

In 3.3 the agent behavior rules that lead to the desired group behavior are pre-
sented and verified in simulations.

Finally, in 4, the advantages and disadvantages of the proposed approach are in-
vestigated. It is shown that the swarm intelligent approach can deliver a robust and
flexible multiple agent system, but that it is very hard to “program” and to design.

Swarm Intelligence

 2

2 Swarm Intelligence
Many distributed problems have been solved by self-organizing autonomous agent
systems. In such systems agents with a local view of their environment take ac-
tions that advance global system objectives. This approach is called swarm intelli-
gence. Swarm intelligence is highly inspired by observations from nature, espe-
cially from observations of social insects, like e.g. ants. The number of successful
Swarm intelligence applications is growing fast, especially in combinatorial optimi-
zation, communicational networks, and robotics. A good starting point to learn
about swarm intelligence is [13] (especially the first chapter). The rest of this chap-
ter is based on this work; some pages are directly copied out of it.

2.1 Social Insects

Social insects are fascinating beings. Every single insect in a social insect colony
seems to have its own agenda, and yet an insect colony looks so organized. The
integration of all individual behaviors does not seem to require any supervisor.

For example, Leafcutter ants cut leaves from plants and trees to grow fungi (Fig.
2-1). Workers forage for leaves hundreds of meters away from the nest, literally
organizing highways to and from their foraging sites [14].

Fig. 2-1 Leafcutter Ants Bringing Back Cut Leaves to the Nest

Swarm Intelligence

 3

Weaver ant workers form chains of their own bodies, allowing them to cross wide
gaps and pull stiff leaf edges together to form a nest. Several chains can join to
form a bigger one over which workers run back and forth. Such chains create
enough force to pull leaf edges together. When the leaves are in place, the ants
connect both edges with a continuous thread of silk emitted by a mature larva held
by a worker [14].

Army ants organize impressive hunting raids, involving up to 200,000 workers,
during which they collect thousands of prey.

Honey bees build series of parallel combs by forming chains that induce a local
increase in temperature. The wax combs can be more easily shaped thanks to this
temperature increase. With the combined forces of individuals in the chains, wax
combs can be untwisted and be made parallel to one another. Each comb is or-
ganized in concentric rings of brood, pollen, and honey. Food sources are ex-
ploited according to their quality and distance from the hive. At certain times, a
honey bee colony divides: the queen and approximately half of the workers leave
the hive in a swarm and first form a cluster on the branch of a nearby tree. Poten-
tial nesting sites are carefully explored by scouts. The selection of the nesting site
can take up to several days, during which the swarm precisely regulates its tem-
perature [15].

Nest construction in the wasp Polybia occidentalis involves three groups of work-
ers, pulp foragers, water foragers, and builders. The size of each group is regu-
lated according to colony needs through some flow of information among them
(Fig. 2-2).

Fig. 2-2 Nest Building in the Neotropical Wasp Polybia Occidentalis

Swarm Intelligence

 4

Tropical wasps build complex nests, comprised of a series of horizontal combs,
protected by an external envelope and connected to each other by a peripheral or
central entrance hole (Fig. 2-3).

Fig. 2-3 Nest of a Parachartergus Wasp Species

Swarm Intelligence

 5

Some species of termites build even more complex nests (Fig. 2-4), comprised of
roughly cone-shaped outer walls that often have conspicuous ribs containing venti-
lation ducts which run from the base of the mound toward its summit, brood cham-
bers within the central “hive” area, which consists of thin horizontal lamellae sup-
ported by pillars, a base plate with spiral cooling vents, a royal chamber, which is a
thick-walled protective bunker with a few minute holes in its walls through which
workers can pass, fungus gardens, draped around the hive and consisting of spe-
cial galleries of combs that lie between the inner hive and the outer walls, and,
finally, peripheral galleries constructed both above and below ground, which con-
nect the mound to its foraging sites.

Fig. 2-4 Macrotermes Mound

Swarm Intelligence

 6

And there are many more examples of the impressive capabilities of social insects.
If no one is in charge, how can one explain the complexity and sophistication of
their collective productions? An insect is not a simple creature, but the complexity
of one single insect is not sufficient to explain the complexity of the behavior of a
social insect colony. Perhaps the most difficult question is how to connect individ-
ual behavior with collective performance or in other words, how does cooperation
arise?

2.2 Self-Organization

The key point to this question is self-organization (SO): The complex collective
behavior may emerge from actions among individuals that act rather simple. The
discovery of SO provides us with a powerful tool to transfer knowledge about so-
cial insects to the field of intelligent system design. One of the most important fea-
tures of social insects is that they can solve distributed problems in a very flexible
and robust way, and because social insects act rather simple, it allows us to de-
sign agents that mimic their behavior at some level of description.

One problem is that swarm intelligent systems are hard to design, because the
paths to problem solving are not predefined but emergent in these systems. One
possible solution for that is to study how social insects collectively perform some
specific task, model their behavior, and use the model as a basis upon which arti-
ficial variations can be developed, either by tuning the model parameters beyond
the biological relevant range or by adding non-biological features to the model. Of
course an engineer is not constrained by what is observable in nature. An engi-
neer can resort to whatever available techniques that are appropriate to solve a
problem. But often natural selection may have picked those biological organiza-
tions that are most efficient, flexible and robust. Therefore looking how nature
solved a problem can be a good starting point to design a swarm intelligent sys-
tem.

SO is a set of dynamical mechanisms whereby structures appear at the global
level of a system from interactions among its lower-level components. The rules
specifying the interactions among the system’s constituent units are executed on
the basis of purely local information, without reference to the global pattern, which
is an emergent property of the system rather than a property imposed upon the
system by an external ordering influence. Self-organization relies on four basic
ingredients:

1) Positive feedback consists of a set of simple behavioral rules that promote
the creation of structures. An example of positive feedback is recruitment
and reinforcement. For instance, recruitment to a food source is a positive
feedback that relies on trail laying and trail following in some ant species, or
dances in bees.

2) Negative feedback is the counterpart to positive feedback and helps to sta-
bilize the collective pattern: it may take the form of saturation, exhaustion or
competition. In the example of foraging, negative feedback stems from the
limited number of available foragers, satiation, food source exhaustion,
crowding at the food source, or competition between food sources.

Swarm Intelligence

 7

3) SO relies on the amplification of fluctuations (random walks, errors, random
task-switching, and so on). Not only does collaborative behavior emerge
despite randomness, but randomness is often crucial, since it enables the
discovery of new solutions, and fluctuations can act as seeds from which
structures nucleate and grow. For example foragers in ant colonies might
get lost; even though it may seem inefficient, lost foragers can find new,
unexploited food sources, and recruit nest mates to these food sources.

4) All cases of SO rely on multiple interactions. A single individual can gener-
ate a self-organized structure such as a stable trail provided pheromonal
lifetime is sufficient, because trail-following events can then interact with
trail-laying actions. However, SO generally requires a minimal density of
mutually tolerant individuals. Moreover, individuals should be able to make
use of the results of their own activities as well as of others’ activities (al-
though they may perceive the difference): for instance, trail networks can
self-organize and be used collectively if individuals use others’ pheromone.
This does not exclude the existence of individual chemical signatures or in-
dividual memory which can efficiently complement or sometimes replace
response to collective marks.

A self-organized phenomenon can usually be characterized by a few key proper-
ties:

1) The creation of structures in an initially homogeneous medium. Such struc-
tures include nest architectures, foraging trails or social organization.

2) The possible coexistence of several stable states (multi-stability). Because
structures emerge by amplification of random deviations, any such devia-
tion can be amplified, and the system converges to one among several
possible stable states, depending on initial conditions.

3) The existence of bifurcations when some parameters are varied. The be-
havior of a self-organized system can change dramatically as a result of
small changes in the parameters.

Swarm Intelligence

 8

2.3 Stigmergy

In combination with self-organization, stigmergy is the other most important con-
cept of swarm intelligence. The term was introduced by French biologist Pierre-
Paul Grassé in 1995 to refer to termite behavior. He defined it as: “Stimulation of
workers by the performance they have achieved.” In a stigmergic system commu-
nication doesn’t take place in a direct but in an indirect way. Individual parts of the
system modify their local environment, and other parts, or even the same individu-
als, react to these modifications of the environment. For example task coordination
and regulation in the context of nest reconstruction in some termites species does
not depend on the workers themselves but are mainly achieved by the nest struc-
ture: a stimulating configuration triggers the response of the termite worker, trans-
forming the configuration into another configuration that may trigger in turn another
action performed by the same termite or any other worker in the colony. Another
example of how stigmergy and self-organization can be combined is recruitment in
ants: self-organized trail laying by individual ants is a way of modifying the envi-
ronment to communicate with nest mates that follow such trails.

Replacing direct communication by indirect communication not only allows agents
to be simple, but is also often associated with flexibility: If the environment
changes because of external perturbations, the agents respond appropriately to
that perturbation, as if it were a modification of the environment caused by the col-
ony’s activities.

2.4 An Example from Nature and its Application

2.4.1 Ant Foraging

A very interesting study of swarm intelligence investigated the foraging behavior of
ants. Everybody has seen the so called “ant highways”, connecting ant nests to
food sources, often in the seemingly shortest way. How do these rather simple
creatures solve that problem? In experiments with the Argentine ant Linepithema
humile, Deneubourg et al showed that path selection to a food source is based on
self-organization. In one experiment Deneubourg presented a food source to an
ant colony, separated by a bridge with two equally long branches (Fig. 2-5). The
observation was the following: The first few minutes oscillations appeared, which
means that the one or the other branch was used more often, caused by random
fluctuations. But after a while the ants tended to use all the same branch.

Swarm Intelligence

 9

Fig. 2-5 Binary Bridge Experiment

In Fig. 2-6 the usage of the two branches in percent is plotted against the time.
Obviously the initial fluctuation in this experiment was not strong enough to pre-
vent exploitation of the other branch.

Fig. 2-6 Usage of the Two Branches in Percent

Swarm Intelligence

 10

This behavior of the ant colony can be explained quite simple. What happens is
that each ant lays a pheromone trail on the way to the food source as well as on
the way back to the nest. The amount of pheromone on one branch is proportional
to the number of ants which have been using the branch in the past. The probabil-
ity of choosing a branch at a certain time depends on the amount of pheromone on
the branch. So after random fluctuations the system eventually goes into a steady
state, because one branch gets chosen more often by chance, which leads to a
higher pheromone concentration on that branch. The higher pheromone concen-
tration on one of the branches leads to a higher usage of that branch by the ants.
This in turn increases the concentration of pheromone and so on. This indirect
communication between the ants is an ideal example for stigmergy. One ant
changes the environment by laying a pheromone trail and the other ants react on
that changed environment by following that trail.

In a second experiment Deneubourg constructed a bridge with two branches, one
twice as long as the other, that separated a nest from a food source. Within just a
few minutes the colony usually selected the shorter branch. Again this behavior
can be explained by laying and following pheromone trails. The first ants returning
to the nest from the food source are those that have taken the shorter path in both
directions. Because this route is the first to be marked with pheromone, nest
mates are attracted to it. This is shown schematically in Fig. 2-7.

Fig. 2-7 Bridge Experiment with Unequally Large Branches

Swarm Intelligence

 11

Simulations of this behavior were successfully done. In Fig. 2-8 a simulation is
shown where 3 food sources of identical quality are presented to a colony of artifi-
cial ants (a). Pheromone decay is assumed to occur over short time scales. First
the ants explore their environment randomly (b). After a while the closest food
sources are connected to the nest by trails (c). After the closest food sources are
exploited the exploitation of farther food sources begins (d).

Fig. 2-8 Simulation of Ant Foraging

Swarm Intelligence

 12

2.4.2 Solving the Traveling Salesman Problem with Artificial Ants

If ants find the shortest path between two or more locations, it is only natural that
one of the first applications of swarm intelligence was a path optimization problem:
the traveling salesman problem (TSP).

The basic idea behind solving TSP with ant-based algorithms is using a positive
feedback algorithm, based on an analogy with the trail-laying and trail-following
behavior of some ants, to reinforce those portions of good solutions that contribute
to the quality of these solutions, or to directly reinforce good solutions. To avoid
that good - but not very good - solutions become reinforced to an extent where
they constrain the search of new solutions too much, a negative feedback is intro-
duced. This negative feedback consists of pheromone evaporation. One first ap-
proach to solve the TSP with an ant-based algorithm was called Ant System (AS).

In AS artificial ants are deployed randomly on the nodes of a TSP graph. Then
they move around from one node to another until they complete a tour. A tour is
completed if every node is visited once. After each completed tour each ant de-
posits a certain amount of virtual pheromone on each edge of the problem graph,
depending on how far the ant traveled during its tour- shorter tours are rewarded
with more pheromone. A certain amount of virtual pheromone will also decay,
causing older solutions to fade away.

The decision of each ant in each time step to which node to go next is done with
the following rules:

• An ant avoids visiting a node that has been already visited by maintaining a
tabu list.

• The distance to the next nodes. This information is based on strictly local in-
formation and represents the heuristic desirability of choosing nodes j when
in city i. Nodes that are closer are selected with higher probability.

• The amount of virtual pheromone on the edges that connect node j with
node i.

Fig. 2-9 shows a possible solution of a given TSP problem, found by artificial ants.
The remarkable thing to notice is that the algorithm finds multiple solutions, which
makes this approach highly flexible.

Swarm Intelligence

 13

Fig. 2-9 Solution of a TSP Problem Found by AS

Ant system has been compared to other general purpose heuristics on relatively
small TSP (e.g. 30 cities) and performed pretty well. Unfortunately, for problems of
growing dimensions (e.g. 75 cities), AS never reached the best known solutions
after 3000 iterations. But an improved version of AS equipped with a simple local
search reaches outstanding performance. That algorithm (Ant Colony System) will
not be discussed in detail here, for details see [16][17]. The Ant Colony System
algorithm belongs to the best TSP solving algorithms.

Swarm Intelligence

 14

2.5 Telecommunication Applications

If swarm intelligent approaches deliver good algorithms for solving TSP, it is only
natural to consider these approaches for telecommunication applications. Similar
to TSP, routing is a process where information is transmitted from a source to a
destination through a sequence on switching/buffering stations or nodes. The ob-
jective of any routing algorithm is to direct traffic from sources to destinations
maximizing network performance while minimizing costs (like rate of call rejection,
throughput, packet delay...). What makes this problem especially interesting is that
network conditions constantly change. Routers may fail, new routers may be
added, local congestions may arise and so on. Very interesting and successful
swarm-based telecommunication applications have been developed. One is called
ant-based control (ABC), introduced by Schoonderwoerd et al [18]. This algorithm
was designed with a telephone network application in mind. Another algorithm,
called AntNet was proposed by Di Caro and Dorigo [19]. AntNet was primarily de-
signed for packet-switching and connectionless networks like the Internet. Several
companies are exploring these approaches for handling their traffic on networks,
e.g. the France Telecom, British Telecommunications, and the American MCI.
These algorithms will not be presented here.

2.6 Other Swarm-Based Applications

Probably the most successful swarm-based applications have been developed in
communication and optimization problems. But also the controlling of a group of
robots by adopting the behavior of insect swarms is increasingly being investi-
gated. In another project, a model that was initially introduced to explain how ants
cluster their dead and sort their larvae has become the basis of a new approach
for analyzing financial data. This approach is a new and promising method to solve
sorting problems. The scheduling of jobs, e.g. in a factory, is another promising
topic that is under investigation, inspired by the way honeybees perform task allo-
cation. There are numerous other examples: investigation in controlling unmanned
vehicles is done, the NASA is investigating the use of swarm technology for plane-
tary mapping. Even the usage of "nanobots" within the human body for the pur-
pose of killing cancer tumors is discussed as a future application.

Swarm Intelligence

 15

2.7 Summary

Swarm intelligence is a growing research field for solving distributed problems.
Observations from nature showed that problem solving by social insects is done in
a flexible, robust, decentralized and self-organized way. Swarm intelligent sys-
tems, if well designed, can deliver similar results. Furthermore some tasks may be
too complex for a single agent to perform. Increased speed can result from using
several agents. Designing and building several simple agents can be cheaper than
designing a few complex agents. They can be more flexible, reliable and fault-
tolerant, because one or several agents may fail without affecting task completion.
Randomness or fluctuations may enhance the system’s ability to explore new be-
haviors and find new solutions. The use of stigmergy can greatly reduce the need
of communication between agents. Furthermore the fact that no central controlling
unit is in charge can be a big advantage: In a centralized system the failure of the
central control normally means the failure of the whole system; while the failure of
an individual in a swarm intelligent systems normally has only little impact on the
performance of the whole system.

Indeed, the potential of swarm intelligence is enormous. It offers an alternative
way of designing systems that have traditionally required centralized control and
extensive preprogramming. It instead boasts autonomy and self-sufficiency, rely-
ing on direct or indirect interactions among simple individual agents. As men-
tioned, one big advantage is that this can lead to systems that can adapt quickly to
rapidly fluctuating conditions.

Of course swarm intelligence has not only advantages. For example stagnation
can occur: Because of the lack of global knowledge, a group of agents may find
itself in a deadlock, where it cannot make any progress. But the biggest problem is
to determine how the agents of a swarm-based solution should be programmed.
Because the pathways to solutions are not predefined but emergent, there is no
general guideline how to design a swarm intelligent system. A good example
where both of the mentioned problems appear is AS (see 2.4.2): As mentioned
one parameter that needs to be tuned is the evaporation rate of the deposited
pheromone. This parameter has no biological relevance, because in reality the
pheromone evaporates very slowly. With such an evaporation rate, the systems
would stagnate very fast, because initial random fluctuations would be amplified.
In other words all the ants would end up doing the same tour. The solutions found
by such a system would very likely not be optimal. On the other hand, if the phero-
mone decay is tuned too fast, the routes are not stabilized fast enough, so that
again no optimal solutions are found. Another parameter that has to be tuned is
the total number of ants: Too many ants would quickly reinforce suboptimal trails
and lead to early convergence to bad solutions, whereas too few ants would not
produce the expected synergistic effects of cooperation, because of the process of
pheromone decay. So here we have an example of two parameters that need to
be tuned to have a good working system. But how to tune these parameters? This
is exactly one of the big questions, and probably the biggest drawback of swarm
intelligence. Nobody knows the answer to that question; it is a process of trial and
error. There is a similarity here with the problem of designing neuronal networks:
How can one tune the weights of the connections so that the network performs a
given task?

Swarm Intelligence

 16

One approach to overcome this problem is to tune the parameters according to the
values that can be observed in nature. But often the processes found in nature are
not well understood, and even if such parameter can be measured in nature, it is
not guaranteed that these values are optimal. And in most cases we can’t even
find a direct analogy in nature for a given distributed problem.

To tune a system with two or three parameters can be a tiring job. But what are
two parameters? In a real world application we typically speak of more than 10 or
maybe even a hundreds of parameters. How to tune efficiently the parameters of
such a system is a current research topic. One promising solution might be to let
these parameters being tuned by genetic algorithms.

But not only “programming” a swarm intelligent application is a problem. The big-
ger problem might be to define it. How complex should individual agents be?
Should they be identical? Should they have the ability to learn? Should they have
a memory? How local should their knowledge of the world be? And so on. These
questions are problem specific, and unfortunately there is no general guideline at
all. One approach could be to start with the simplest possible agents and then
progressively to increase the complexity until the given problem is solved satisfac-
torily. Genetic algorithms might solve the problem of tuning parameters, but finding
the relevant agent rules and the relevant parameters that might be considered for
a given problem is a very different beast. In other words, designing a swarm intel-
ligent system seems to be impossible to be automated, at least in the near future.

Last there is another major problem with swarm intelligent applications: How do
we measure the performance of such an application? Swarm intelligent ap-
proaches typically work as poor to average in static problems, but fully express
their capabilities only in the context of dynamically changing problems. But design-
ing benchmarks that take into account dynamic changes is difficult.

In view of all these issues, I think it is fair to say that swarm intelligence is on the
right track, but a lot more work needs to be done.

Bodyguard Scenario

 17

3 Bodyguard Scenario

3.1 Scenario Details

In this thesis a bodyguard scenario is envisaged. A swarm intelligent system is
developed, in which multiple autonomously acting bodyguard agents shall protect
one or more VIP agents. To protect a VIP in this context means:

• to find the VIP

• to encircle the VIP

• to follow the VIP in a given distance

The VIPs are agents that move around randomly. All agents shall be distributed
randomly at startup. The amount of agents shall be flexible, both the amount of
VIPs and the amount of bodyguards. No agent shall use any global information; all
agents shall use exclusively local information. That also includes the amount of
VIPs and the amount of bodyguards that are deployed. All decisions shall be done
individually by each agent, and no direct communication between the agents is
desired to keep the agents as simple as possible.

The scenario takes place in a closed world. To make it as simple as possible a
quadratic area with no obstacles is used. For further simplification it is assumed
that the VIPs always move with a constant speed. The bodyguards can move with
a non-constant speed if desired.

The main attention is turned on the behavior of the bodyguards. The VIPs are just
very simple agents that move around randomly, without any intelligence at all. Fur-
thermore the problem of avoiding collisions is not envisaged in this work.

First a solution for only one VIP is developed; later this solution will be extended to
take two or even more bodyguards into account.

3.2 Simulation Environment

NetLogo [20] is used to simulate the VIP scenario. NetLogo is a programmable
modeling environment to simulate complex multi-agent systems that develop over
time. Instructions to hundreds or even thousands of independent agents can be
given, all operating concurrently. This makes it a perfect tool to simulate swarm
intelligent systems, because the connections between the micro-level behavior of
individual agents and the macro-level patterns that emerge from the interactions of
the individuals can be explored. It is quite simple to create new models in Net-
Logo, yet it is a powerful tool for studying multi agent systems. Last but not least it
is free of charge. See Fig. 3-1 for a screenshot of NetLogo. The screenshot shows
a run of an ant foraging model, which is already included in NetLogo.

Bodyguard Scenario

 18

Fig. 3-1 Screenshot of a NetLogo Simulation

3.3 Agent Behavior Rules

Like mentioned in the introduction there is no general guideline for how to design
the behavior rules of the individual agents of a multi agent system, so that a collec-
tive pattern arises. To learn the behavior rules of the agents by copying them from
nature also failed for this application, because no suitable analogy in nature was
found. Of course there are similar looking behaviors in nature, for example a pride
of wolfs may follow an alpha wolf or something like that, or we might even look
how human bodyguards do their job. But these analogies are not suitable. They
are not suitable because in those examples we have highly complex and intelligent
individuals. The intelligent group behavior is not the emergent result of simple indi-
vidual behavior, but rather a result of a complex individual behavior. And in social
insects there is usually no leader-follower principle, which could be compared to a
VIP-bodyguard scenario.

Bodyguard Scenario

 19

So how can we define the agents? How to find the behavior rules that emerge in a
collaborative group behavior? Like mentioned in 2.7, probably the only possibility
to solve this problem is to start with a very simple agent, and progressively add
more complexity. Therefore a very simple agent is developed that is able to find a
VIP. Once this task is satisfactorily accomplished by this agent, further ability is
added, like the ability to follow a VIP in a given distance and so forth. Step by step
an agent is developed that will be (hopefully) capable of completing the whole
task. After each step the agent is tested in simulations.

3.3.1 Finding the VIP

Like mentioned all agents shall be distributed randomly at startup. To find a VIP,
the bodyguards must have the ability to sense a VIP somehow, provided that they
are close enough. This can be achieved in several ways, e.g. through visual infor-
mation. In this work it is assumed that a VIP “smells”, and that the bodyguards can
climb up a smell gradient. This is done with the pheromone trail following capabili-
ties of some ant species in mind. The smell of a VIP is assumed to diffuse evenly
over the neighbor environment. It is assumed that the bodyguards only react to a
smell intensity greater than a given threshold. If the smell intensity is below that
threshold, the bodyguards can’t sense anything, and therefore they don’t know
where a VIP could be. Hence they keep on searching. Searching means that they
keep on moving randomly until they sense the smell of a VIP. If they sense the
smell of a VIP, they climb up the smell gradient, which leads them directly to the
VIP.

In a real robot application, this behavior could be achieved quite simple. Of course,
nobody would use smell but rather visual information or maybe the strength of a
radio signal. One example of a very simple real robot that would perform very simi-
lar to the above described behavior would be a Braitenberg vehicle, type2 (Fig.
3-2) [21].

Bodyguard Scenario

 20

Fig. 3-2 Braitenberg Vehicle, Type 2

This type of vehicle has two sensors and two motors; the left sensor is connected
to the right motor and vice versa. If the left sensor gets more input (e.g. light), the
right motor turns faster, which lets the vehicle turn left. If both sensors have the
same input, the vehicle will go straight. Therefore this vehicle turns towards a
source and approaches the source until it hits the source. This behavior will be
refined in the next section.

The pseudo code for such a bodyguard agent that approaches a smelling VIP is
given in Code Example 1.

Bodyguard Scenario

 21

Function Search_VIP()
 loop do
 smell <- actual smell intensity
 direction <- direction where smell comes from
 newheading <- Setheading(smell,direction)
 set the new heading of agent to value of newheading
 move agent one step forward

Function Setheading(smell,direction) returns a new heading
 newheading <- a random value
 if smell > 5 then newheading <- direction
 return newheading

Code Example 1 Pseudo Code for Approaching a VIP

Note that “direction” and “newheading” are variables that represent headings in
degrees. In the function Setheading() the value for the new heading is set to a ran-
dom value first. If the intensity of smell is bigger than a threshold (5) the value for
the new heading is overwritten with the value of the parameter direction. The lower
threshold for the smell intensity is obtained experimentally and has no physical or
biological relevance.

A NetLogo code, executed each time step for each bodyguard could look like this:

ifelse value-from (patch-here) [smell] >= 5 [set heading uphill smell]
[
 lt random 45
 rt random 45
]
fd 1

Code Example 2 NetLogo Code for Approaching a VIP

Note that the heading of each agent is set towards the smell source, only if the
smell is stronger than 5. If the smell intensity is lower than that threshold, the
heading is set randomly. Note furthermore that the code is not embedded in a
loop. It is supposed that that piece of code is implemented within (or called from) a
go() procedure, which is called automatically by the NetLogo system at each time
step.

Bodyguard Scenario

 22

3.3.2 Following a VIP in a Given Distance

After being able to find a VIP the bodyguards should be able to follow it in a given
distance. So first of all, the bodyguard should stop at a certain distance when ap-
proaching a VIP. Because the smell of a VIP diffuses evenly, the intensity of smell
is proportional to the distance to a VIP. Therefore the easiest thing to do is to stop
moving forward if the smell exceeds a second upper threshold. The next pseudo
code is only slightly modified from the one in Code Example 1 and realizes exactly
that behavior.

Function Search_VIP()
 loop do
 smell <- actual smell intensity
 direction <- direction from where smell comes from
 newheading <- Setheading(smell,direction)
 set the new heading of agent to value of newheading
 if smell < 550 then move agent one step forward

Code Example 3 Pseudo Code for Approaching a VIP and Stopping When Close
Enough

Note that only the last line has changed compared to Code Example 1. The func-
tion Setheading() is the same like in Code Example 1 and is not repeated here.

Code Example 4 shows the corresponding NetLogo code.

if value-from (patch-here) [smell] >= 5 [set heading uphill smell]
if value-from (patch-here) [smell] <= 550 [fd 1]

Code Example 4 NetLogo Code for Approaching a VIP and Stopping When Close
Enough

Note that the only difference to Code Example 2 is that the agent moves only for-
ward (fd 1) if the smell doesn’t exceed a specific value, otherwise it stops moving.

Again there is a counterpart from the Braitenberg vehicles: Vehicle 3 (Fig. 3-3)
[22]. This vehicle has also two sensors and two motors. But this time the sensors

Bodyguard Scenario

 23

are inhibitory, which means that the weaker the input the stronger the motor turns
and vise versa. Furthermore the connections between sensors and motors are
straight. This vehicle acts exactly as the agent described above: It approaches a
source (light, smell or whatever) until the intensity of light, smell or whatever ex-
ceeds a certain limit and then stops.

Fig. 3-3 Braitenberg Vehicle, Type 3

Of course this behavior is not satisfactory yet. What if the VIP is moving towards
the bodyguard? In this case they might collide. So the next thing to do would be
that the bodyguard moves away from the VIP if it comes too close. And one other
modification greatly improves the behavior of the bodyguards: If the smell of a VIP
lays in-between two upper thresholds, the bodyguard aligns its heading to the VIP.
Hence the bodyguard will follow the VIP always in a tunable distance. Note that for
this capability the vision of the bodyguards has to be increased. So far the only
capability the bodyguards needed was to sense smell and to determine the direc-
tion where the smell comes from. This can be done by using purely local informa-
tion. In NetLogo e.g. the bodyguards only have to watch the patch they are on and
the direct neighbor patches to determine the smell intensity and the direction
where the smell comes from. Now they also need to be able to determine the
heading of the VIP they want to follow. But still we don’t need to provide any global
information to the bodyguards, because the heading of the VIP is only relevant
when the bodyguards are very close to the VIP. But of course this ability increases
the complexity of the bodyguard agents, especially if we think of a real robot im-
plementation. It would increase the complexity because now the robots would not

Bodyguard Scenario

 24

only have to be able to determine distances to each other, but also to determine
the heading of other robots. To determine the distance to another robot should be
quite easy, e.g. with a laser sensor, but to determine the heading of other robots is
probably a very different beast. But to discuss the problems that would arise when
applying the proposed approaches to a real robot application goes beyond the
scope of this thesis.

The bodyguard agents we have developed so fare consider three different thresh-
olds (Fig. 3-4). In the vertical the threshold values are given (5, 300 and 550).
Those values are obtained experimentally and have no biological or physical rele-
vance. The area around a VIP is divided into four zones (1, 2, 3, 4, in the horizon-
tal), bounded by the three thresholds.

Fig. 3-4 The Different Thresholds and Zones of Smell Around a VIP

Bodyguard Scenario

 25

The bodyguard agents act on four different rules, based on the intensity of smell.
Here are the rules:

• If the bodyguard is too far away from a VIP and can’t smell it, it turns ran-
domly (zone 1)

• If the bodyguard can smell a VIP but the smell doesn’t exceed 300, it turns
towards the VIP (zone 2)

• If the smell exceeds 300 but is smaller than 550, the bodyguard aligns its
heading with the heading of the VIP (zone 3)

• If the smell exceeds 550, the bodyguard turns away from the VIP (zone 4)

• After the heading has been set by these rules, the bodyguard will move one
patch forward

In Code Example 6 an agent is presented that implements the rules from above.
Only the function that sets the new heading is modified from Code Example 1, the
main function searchVIP() hasn’t changed and is not repeated.

Function Setheading(smell,direction,headingVIP) returns a new head-
ing
 newheading <- a random value
 if smell > 5 and smell <= 300 then newheading <- direction
 if smell > 300 and smell < 550 then newheading <- headingVIP
 if smell > 550 then newheading <- direction - 180
 return newheading

Code Example 5 Pseudo Code of Bodyguard First Attempt

Bodyguard Scenario

 26

Code Example 6 shows the corresponding NetLogo code.

 if value-from (patch-here) [smell] >= 5 and value-from (patch-here) [
smell] <= 300
 [set heading uphill smell]

if value-from (patch-here) [smell] > 300 and value-from (patch-here) [
smell] < 550
 [
 set heading value-from vip [heading]
]
if value-from (patch-here) [smell] >= 550
 [set heading downhill smell]
fd 1

Code Example 6 NetLogo Code of Bodyguard First Attempt

Note that each agent moves one step forward in each time step (fd 1). The rules
above are implemented solely by setting the heading dependent on the intensity of
smell. Fig. 3-5 shows a screenshot of a simulation with one VIP and 10 body-
guards from the first attempt. The VIP agent is the ant in the middle of the bright
area. Only 8 bodyguards can be seen, 2 bodyguards are outside the visible range,
because they haven't found the VIP yet. The bright area around the VIP shows the
intensity of smell: the brighter the stronger the smell. The screenshot is taken ap-
proximately 30 seconds after starting the simulation.

Bodyguard Scenario

 27

Fig. 3-5 Simulation Screenshot with Bodyguard First Attempt

As it can be seen in Fig. 3-5 the performance of the bodyguard agent first attempt
is not satisfactory. Instead of encircling the VIP, the bodyguards end up behind the
VIP, following it all very close to each other.

Bodyguard Scenario

 28

3.3.3 Distributing Evenly Around (Encircling) a VIP

By changing only one of the rules from above (3.3.2 below Fig. 3-4) the perform-
ance of the bodyguards can be increased greatly. The idea is that instead of align-
ing their heading with the heading of the VIP the bodyguards steer away from
each other when they are in a desired distance to the VIP. The easiest way to do
that is that each bodyguard steers away from its nearest neighbor. This will lead to
an even distribution after a while. This behavior is inspired by a physical self-
organizing system drafted in Fig. 3-6.

Fig. 3-6 Self-Organizing Physical System- Initial Situation

In this example some objects are supported on a ring so that they can move freely
in the tangential direction. If these objects exert a repelling force on each other,
the system will end up in a stable state where the distances between the objects
will be equally. This is drafted in Fig. 3-7.

Bodyguard Scenario

 29

Fig. 3-7 Self-Organizing Physical System in Stable State

Note that this system works independently of the amount of objects that are sup-
ported on the ring. The same is true for the modeled behavior: The bodyguards of
version 1 will always distribute quite evenly around a VIP.

So we need to change the rule that let the bodyguards align their headings with
the VIP when they are in the desired distance to the VIP. Instead they have to
steer away from their nearest neighbor. An efficient way to do that is to turn away
in a 90 degrees angle relative to the smell gradient. Fig. 3-8 is similar to Fig. 3-4,
but it shows how ants would align their headings according to the new rules. The
three ants in zone 3 show in which angle they would steer away from each other.

Bodyguard Scenario

 30

Fig. 3-8 The Different Thresholds and Zones for the Bodyguard Version 1

This is the complete set of rules that each bodyguard of the version 1 follows:

• If the bodyguard is too far away from a VIP and can’t smell it, it turns ran-
domly (zone 1)

• If the bodyguard can smell a VIP but the smell doesn’t exceed 300, it turns
towards the VIP (zone 2)

• If the smell exceeds 300 but is smaller than 550, the bodyguard turns away
from its nearest neighbor (zone 3)

• If the smell exceeds 550, the bodyguard turns away from the VIP (zone 4)

• After the heading is set by these rules, the bodyguard moves two patches
forward

Bodyguard Scenario

 31

Note that this time the bodyguards move 2 patches forward. They have to move
faster to make up for the extra way they have to move to get away from their near-
est neighbor.

In Code Example 7 the pseudo code for this type of bodyguard is given, in Appen-
dix A the complete NetLogo code is listed.

Function Protect_VIP()
 loop do
 smell <- actual smell intensity
 direction <- direction from where smell comes from
 newheading <- Setheading(smell,direction)
 set the new heading of agent to value of newheading
 move agent 2 patches forward

Function Setheading(smell,direction) returns a new heading
 newheading <- a random value
 if smell > 5 and smell < 300 then newheading <- direction
 if smell >= 300 and smell < 550 then newheading <- 90 degrees
 relative to smell gradient away from nearest neighbor
 if smell >= 550 newheading <- direction - 180
 return newheading

Code Example 7 Pseudo Code of Bodyguard Version 1

One difference to the physical system described above is that the bodyguard
agents will always move away from their nearest neighbors, even if the distances
are already equally. Unlike the physical system, which “knows” when the distances
between the objects are equally and goes into a stable state, the bodyguards don’t
know when they are distributed evenly around the VIP. Therefore they will keep on
moving away from their nearest neighbor all the time. This leads to a very anxious
looking behavior, the bodyguards move forth and back all the time. Another disad-
vantage is that they have to move much faster than the VIPs to keep up with them,
because of the extra way the move forth and back. Furthermore, thinking of a real
robot implementation, this behavior would be even less efficient because each
time the robots would have to turn around, they would loose additional time. Nev-
ertheless the agents perform pretty well in the simulations. Fig. 3-9 shows screen-
shots of two simulation runs with the bodyguard version 1.

Bodyguard Scenario

 32

Fig. 3-9 Simulation Run with Bodyguard Version 1

Bodyguard Scenario

 33

In the upper screenshot one VIP and three bodyguards were deployed, in the
lower screenshot one VIP and 8 bodyguards were deployed. Both screenshots
were taken about 20 seconds after starting the simulation.

As it can be seen in the screenshots, another disadvantage of this type of body-
guard is that they tend to end up rather behind the VIP.

3.3.4 Further Improvement of the Bodyguard Behavior

The bodyguards presented in 3.3.3 perform satisfactorily, but they have a little
drawback: they move very anxious forth and back, even if the bodyguards are dis-
tributed evenly around the VIP. It would be better if they would align their headings
with the VIP and follow it, once they are distributed evenly around the VIP. The
bodyguards presented in 3.3.2 align their headings with the heading of the VIP
and follow it in the desired distance, but they don’t distribute evenly around the
VIP. A combination of both agent types might be a good solution. Indeed this can
be achieved: By introducing a new smell zone and a new rule the bodyguards first
distribute evenly around the VIP and then follow it in the desired distance without
moving forth and back all the time as the bodyguard from 3.3.3 does. The thresh-
olds and zones for this bodyguard agent are shown in Fig. 3-10.

Fig. 3-10 Thresholds and Zones for Bodyguards Version 2

Bodyguard Scenario

 34

In zone 1 the bodyguards moves randomly, in zone 2 the bodyguards climb up the
smell gradient (just like the bodyguard version 1 from 3.3.3). New is that in zone 3
the bodyguards steer away from each other, but not in a 90 degrees angle relative
to the smell gradient (like the bodyguard version 1), but rather in a smaller angle,
e.g. 80 degrees. By doing that the bodyguards distribute evenly around the VIP
and they approach the VIP at the same time, until they get into zone 4. In zone 4
the bodyguards align their heading with the VIP and follow the VIP. In this zone
they don’t worry about the distance they have to each other, because it is as-
sumed that they already distributed evenly around the VIP in zone 3. In zone 5
they just climb down the smell gradient, like the bodyguards have already done
before.

This is the complete set of rules that each bodyguard of the version 2 follows:

• If the bodyguard is too far away from a VIP and can’t smell it, it turns ran-
domly (zone 1)

• If the bodyguard can smell a VIP but the smell doesn’t exceed 200, the
bodyguard turns towards the VIP (zone 2)

• If the smell exceeds 200 but is smaller than 350, the bodyguard turns away
from its nearest neighbor (zone 3)

• If the smell exceeds 350 but is smaller than 550, the bodyguard aligns its
heading with the heading of the VIP (zone 4)

• If the smell exceeds 550, the bodyguard turns away from the VIP (zone 5)

• After the heading is set by these rules, the bodyguard moves two patches
forward. But if it is in zone 4 it moves with the same peed as the VIP.

The pseudo code for the bodyguard version 2 is given in Code Example 8. The
complete NetLogo Code is given in Appendix B.

Bodyguard Scenario

 35

Function Protect_VIP()
 loop do
 smell <- actual smell intensity
 direction <- direction from where smell comes from
 headingVIP <- the actual heading of the VIP
 newheading <- Setheading(smell,direction,headingVIP)
 set the new heading of agent to value of newheading
 patchestomove <- Move(smell)
 move agent patchestomove patches forward

Function Setheading(smell,direction,headingVIP) returns a new heading
 newheading <- a random value
 if smell > 5 and smell < 200 then newheading <- direction
 if smell >= 200 and smell < 350 then newheading <- 80 degrees
 relative to smell gradient away from nearest neighbor
 if smell >= 350 and smell < 550 then newheading <- headingVIP
 if smell >= 550 then newheading <- direction - 180
 return newheading

Function patchestomove(smell)
 if smell >= 350 and smell < 550 then return 1
 else return 2

Code Example 8 Pseudo Code of Bodyguard Version 2

The bodyguard version 2 performs similar as the bodyguard version 1 but has the
advantage that the agents follow the VIP smoothly instead of moving anxiously
forth and back all the time. But it has also a little drawback: If the VIP is already
protected by a group of bodyguards and a new bodyguard joins, the others don’t
rearrange. They only rearrange if all bodyguards have to rearrange, e.g. after
bouncing from the borders. This can be seen in Fig. 3-11. The screenshots show
the following situations (from top left to bottom right):

First, shortly after starting the simulation two bodyguards found the VIP. They dis-
tributed around in the biggest distance to each other.

Shortly after that, the third bodyguard also found the VIP. The third bodyguard
tries to keep a maximum distance to the two other bodyguards, but the two other
bodyguards don’t rearrange.

Then the VIP bounces from the border. Because of that perturbation the body-
guards have to rearrange.

Bodyguard Scenario

 36

After rearranging, the bodyguards are distributed quite evenly around the VIP.

Fig. 3-11 NetLogo Simulation of Bodyguards Version 2

3.3.5 Protecting More Than One VIP

As we saw in the last chapter the bodyguards do quite a good job in protecting one
VIP. But how do they perform with more than one VIP? How do we need to adjust
the behavior of the bodyguards so that they can protect more than one VIP? The
surprising answer is that we don’t have to do anything. The bodyguards as de-
scribed in the former chapter work pretty well even for more than one VIP. In Fig.
3-12 a simulation run is shown in which 15 bodyguards try to protect 3 VIPs. The

Bodyguard Scenario

 37

initial situation is shown in the top left, the last screenshot is the bottom right. From
each screenshot to the next approximately 20 seconds passed.

Fig. 3-12 NetLogo Simulation with 3 VIPs and 15 Bodyguards

Even though the bodyguard agents are doing a good job in most situations, some-
times a VIP is left alone, while others are protected by more bodyguards than nec-
essary. This can be seen in the third screenshot. Several attempts to overcome
this problem have been undertaken, unfortunately without any success: It seems
to be impossible to solve this problem without providing global information, which
is quite plausible. Dependent on the number of VIPs and the number of body-
guards, the bodyguards would have to act slightly different. But no agent knows
how much VIPs are to be protected nor does any agent know how much body-
guards there are altogether. Of course it is possible to tune the parameters that it

Bodyguard Scenario

 38

works for a given situation, let’s say 3 VIPs and 15 bodyguards. But obviously
there is no generic solution to this problem.

Of course one very simple solution to this problem is to deploy a huge amount of
bodyguards. By doing so it is very unlikely that one VIP will be left alone.

But even though that problem couldn’t be solved, the bodyguards work satisfacto-
rily most of the time. Without any communication or synchronization they tend to
divide themselves quite even-numbered to the different VIPs by random fluctuation
and self organization.

Results and Conclusions

 39

4 Results and Conclusions
In this thesis a multi agent system with a swarm intelligent approach is developed.
An agent type is developed, that in a group is capable of protecting one or more
VIPs by finding them, encircling them, and following them in a tunable distance.
The group behavior of the bodyguard agents emerges from the rather simple be-
havior of individuals. No bodyguard is in charge; all bodyguards follow exactly the
same set of simple rules based on local information.

It is shown that the swarm intelligent approach can deliver flexible and robust solu-
tions. An example for the flexibility of the system is that the amount of bodyguards
deployed can be chosen arbitrarily. The bodyguards perform similarly well for both
cases, whether the amount of bodyguards is rather low or rather high. They even
perform reasonably in most cases when more than one VIP needs to be protected,
especially when many bodyguards are deployed. The interesting aspect is that
they do that without having any information about the amount of bodyguards or the
amount of VIPs. And they don’t need to know it, because the rules work in a way
that the knowledge of the total number of agents is not crucial.

The system is robust, because even if some bodyguard agents may fail, e.g. they
might take quite long to find a VIP. Yet the bodyguards as a group perform well in
most cases. Again, this is especially true for a high number of bodyguards being
deployed.

Two different bodyguard types have been developed, both perform similar. Body-
guard version 1 is more reliable in distributing randomly around the VIP but has
the disadvantage that it moves anxiously forth and back all the time. Bodyguard
version 2 is not as reliable in distributing evenly around the VIP but follows the VIP
smoothly without moving forth and back all the time. This makes that agent type
more useful, especially in the case of a real robot application.

In simulations it has been shown that these kinds of agents perform satisfactorily
in theory. Even though this work could be a starting point for somebody that wants
to implement a bodyguard-VIP-scenario on a real robot platform, it is not within the
scope of this thesis to discuss problems by doing so. Nor it is intended to show
that this approach is better than any other approach. The aim is just to show that
simple agents can perform a collaborative task by self-organization and emer-
gence. A swarm-based approach might be outperformed by other approaches in
terms of speed for example. But the strength of a swarm-based approach is the
simplicity of agents and the flexibility and robustness of the system.

Of course there are not only benefits by using such an approach. In fact swarm
intelligent solutions are very hard to design. It's difficult because it is a bottom-up-
approach without a clear connection between the low-level interactions and the
upper-level global outcome. Indeed it was a long and tiring process to find rules
and parameters to make the system working reasonably. And still the parameters
found are most likely not optimal. The problem of linking the lower-level agent in-
teractions with the upper-level group behavior with clearly defined paths is a cur-
rent research topic. A promising way around this problem is to let the parameters
being tuned automatically, e.g. by genetic algorithms. But first this approach is be-
yond the scope of this thesis, and second it doesn’t provide a solution on how to

Results and Conclusions

 40

design a swarm intelligent system, because before tuning parameters, rules have
to be found that could work, and parameters have to be defined that seem to be
relevant for a problem. And this seems to be impossible to be done automatically,
at least in the near future.

It was challenging and very interesting to work on that topic. Not only because of
the topic of swarm intelligence is rather new, but it is also interdisciplinary. It is
very interesting to see how knowledge from different disciplines (like in this case
biology) can be used in computer science.

References

 V

References
[1] E. H. Callaway, Wireless Sensor Networks: Architectures and Proto-

cols. Boca Raton, FL: CRC Press LLC, 2003.

[2] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
“Wireless Sensor Networks for Habitat Monitoring," ACM International
Workshop on Wireless Sensor Networks and Applications (WSNA02),
Sept. 2002.

[3] F. J. Cilluffo, S. L. Cardash, G. N. Lederman, and C. H. D. Project,
Combating
Chemical, Biological, Radiological, and Nuclear Terrorism: A Compre-
hensive Strategy. Washington, DC: Center for Strategic and Interna-
tional Studies, 2001.

[4] Committee on Army Science and Technology for Homeland Defense,
Science and technology for army homeland security. Report 1, ch. Ex-
ecutive Summary, pp. 13-21. Washington, DC: National Academies
Press, 2003.

[5] Committee on Army Science and Technology for Homeland Defense,
Science and technology for army homeland security. Report 1, ch. Ex-
ecutive Summary, pp. 4-13. Washington, DC: National Academies
Press, 2003.

[6] Committee on Army Science and Technology for Homeland Defense,
Science and technology for army homeland security. Report 1, ch.
chaper 3, Denial and Survivability Technologies. Washington, DC: Na-
tional Academies Press, 2003.

[7] K. L. Moore, Y. Chen, and S. Zeng, “Diffusion based path planning in
mobile actuator-sensor networks (MAS-net) - some preliminary results,"
Proceedings of SPIE Conf. on Intelligent Computing: Theory and Appli-
cations II, part of SPIE's Defense and Security, 2004.

[8] Y. Chen, K. Moore, and Z. Song, „Diffusion boundary determination and
zone control via mobile actuator-sensor networks (MAS-net): Chal-
lenges and opportunities," Intelligent Computing: Theory and Applica-
tions II, part of SPIE's Defense and Security, 2004.

[9] K. Moore and Y. Chen, “Model-based approach to characterization of
diffusion processes via distributed control of actuated sensor networks,"
IFAC Symposium of Telematics Applications in Automation and Robot-
ics, Helsinki University of Technology, 2004.

[10] MAS-mote – A Mobility Node for MAS-net (Mobile Actuator Sensor
Networks),
http://www.csois.usu.edu/people/yqchen/paper/04C14_robio_Zhen.pdf

[11] Crossbow, “MICA2”,
http://www.xbow.com/Products/productsdetails.aspx?sid=69

References

 VI

[12] “TinyOS”, http://webs.cs.berkeley.edu/tos/

[13] Eric Bonabeau, Marco Dorigo, Guy Theraulaz, “Swarm Intelligence-
From Natural to Artificial Systems”, Oxford University Press, 1999,
ISBN: 0-19-513159-2

[14] Hölldobler, B., and E. O. Wilson. The Ants. Cambridge, MA: Harward
University Press, 1990

[15] Heinrich, B. “The Regulation of Temperature in the Honey Bee Swarm.”
Sci. Am. 244 (1981): 146-160

[16] Dorigo, M., and L. M. Gambardella. “Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman Problem.” IEEE Trans.
Evol. Comp. 1 (1997): 53-66

[17] Dorigo, M., and L.M. Gambardella. “Ant Colonies for the Traveling
Salesman Problem.” BioSystems 43 (1997): 73-81

[18] Schoonderwoerd, R., O. Holland, J. Bruten, and L. Rothkrantz. “Ant-
Based Load Balancing in Telecommunications Networks.” Adapt. Be-
hav. 5 (1996): 169-207

[19] Di Caro, G., and M. Dorigo. “AntNet: Distributed Stigmergetic Control
for Communications Networks.” J. Art. Int. Res. 9 (1998): 317-365

[20] Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Cen-
ter for Connected Learning and Computer-Based Modeling, Northwest-
ern University. Evanston, IL.

[21] Valentino Braitenberg. “Vehicles. Experiments in Synthetic Psychology.”
MIT Press, (1984): 6-9

[22] Valentino Braitenberg. “Vehicles. Experiments in Synthetic Psychology.”
MIT Press, (1984): 10-14

[23] Craig W. Reynolds. “Flocks, Herds, and Schools: A Distributed Behav-
ioral Model.” http://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/

Appendix

 VII

Appendix

A Appendix 1: Complete NetLogo Code of Bodyguard Version 1

;Different agent types in this simulation
breeds [bodyguards vips] ; In this world we have vips and bodyguards. The vips
;move around randomly. The bodyguards shall protect the vips.

;global variables
globals
[real-patches ;; patches in which to diffuse the to-diffuse variable
 border ;; patches for whom the value of t-diffuse should remain 0
 vips-movements ;; counter for the vips movements, every 10th movement make
;a random turn
 mouse-clicked ;; keeps track of click-and-hold
 clicked-turtle ;; who was clicked on...
]

;patches variables
patches-own
[smell ;; the smell of each patch. the patch where the vips are on, has the maxi-
;mum smell. this smell is diffused to the neighbor patches
 my-real-neighbors ;; all "valid" neighbors of a patch- no wrapping is allowed
]

;turtles variables
turtles-own [
 flockmates ;; agentset of nearby turtles
 nearest-neighbor ;; closest one of our flockmates
]

;setting up the initial situation
to setup
 ca ;; clear the screen
 ;Setup vehicles and patches
 setup-bodyguards
 setup-vips
 setup-patches
 set mouse-clicked false
 set clicked-turtle nobody
end

;creating and ditributing the bodyguard agents
to setup-bodyguards
 create-bodyguards bodyguard-count ;; create the bodyguards
 ask turtles [
 set shape "bug"
 set size agents-size
 set color green
 ;;distribute the bodyguards randomly

 fd (random screen-edge-x)
 lt random 360
]
end

;creating and distributing the vip agents
to setup-vips
 create-vips vips-count
 ask vips [
 set shape "bug"
 set size agents-size
 set color red
 ;;distribute the vips randomly
 lt random 360
 fd (random screen-edge-x)
]
end

;setting up the simulation world
to setup-patches
 ;; set the border pachtes, where no diffusion takes place
 set border patches with [abs pxcor = screen-edge-x
 or abs pycor = screen-edge-y]
 ;; set the rest of the patches, where diffusion of smell takes place
 set real-patches patches with [abs pxcor < screen-edge-x
 and abs pycor < screen-edge-y]
 ask patches [
 set my-real-neighbors neighbors with
 [abs pxcor < screen-edge-x and abs pycor < screen-edge-y]
]
 ;Color the border patches as boundary
 ask border [
 set pcolor grey
]
 ;; Call the procedure which sets the smell on the patches where the vips are on
 set-smell-source
end

;setting the smell variable on all patches with vips and distributin over neighbor
;patches
to set-smell-source
 ;Reset former smell-sources
 ask real-patches [set smell 0]
 ;Setup the patches where a vip is on as the smell sources and diffuse smell
 let value 0
 ask patches with [any? vips-here] [set smell 90000]
 repeat 25 [
 diffuse smell 1.0
 without-interruption
 [ask border [

 set value (smell / (count my-real-neighbors))
 ask my-real-neighbors [set smell (smell + value)]
 set smell 0
]]
]
 ;; paint the smell if desired
 ifelse (show-smell-of-vips = true) [
 ;Color the patches according to their brightness
 ask real-patches [
 set pcolor scale-color yellow smell 0 730
]
]
 ;; if not set all real patches to black
 [ask real-patches [set pcolor black]]
end

;; run the simulation, called by NetLogo System automatically at each time step
to go
 ask turtles [
 set-heading
]
 ask turtles [
 bounce
]
 move-turtles
 set-smell-source
end

;moving the turtles forward
to move-turtles
 ask vips [
 fd vip-speed
]
 ask bodyguards [
 fd bodyguards-speed
]
 set vips-movements (vips-movements + 1)
end

;setting the heading of the turtles
to set-heading
 ;heading of bodyguards
 if breed = bodyguards [
 ;random heading
 if value-from (patch-here) [smell] < 5 [
 lt random 45
 rt random 45
]
 ;climb up smell gradient
 if value-from (patch-here) [smell] >= 5 and value-from (patch-here) [smell] <=

300 [set heading uphill smell]
 ;move away from nearest neighbor in a 90 degrees angle from direction to vip
 if value-from (patch-here) [smell] > 300 and value-from (patch-here) [smell] <
550 [
 find-flockmates
 ifelse any? flockmates
 [find-nearest-neighbor
 ;only if turtles are not on the same patch- otherwise simulation runtime error
 ifelse patch-here != value-from (nearest-neighbor) [patch-here] [
 set flockmates vips
 let nearest-vip min-one-of flockmates [distance myself]
 let vipheadingright towards nearest-vip + 90
 let vipheadingleft towards nearest-vip – 90
 let rightpatch patch-at-heading-and-distance vipheadingright bodyguards-
speed
 let leftpatch patch-at-heading-and-distance vipheadingleft bodyguards-
speed
 let distanceleft value-from (nearest-neighbor) [distance-nowrap leftpatch]
 let distanceright value-from (nearest-neighbor) [distance-nowrap right
patch]
 ifelse distanceleft > distanceright [set heading vipheadingleft]
 [set heading vipheadingright]
]
 ;if turtles are on same patch turn randomly
 [
 lt random 90
 rt random 90
]
]
 [
 set flockmates vips
 let nearest-vip min-one-of flockmates [distance myself]
 set heading value-from nearest-vip [heading]
]
]
 ;climd down smell gradient
 if value-from (patch-here) [smell] >= 550 [set heading downhill smell]
]
 ;heading of vips
 if breed = vips [
 if remainder vips-movements 10 = 0 [
 lt random 90
 rt random 90
]
]
end

;find all bodyguards in radius of vision
to find-flockmates ;; turtle procedure
 set flockmates (bodyguards in-radius vision) with [self != myself]

end

;find the nearest flockmate
to find-nearest-neighbor ;; turtle procedure
 set nearest-neighbor min-one-of flockmates [distance myself]
end

;; this procedure checks the coordinates and makes the turtles
;; reflect according to the law that the angle of reflection is
;; equal to the angle of incidence
to bounce
 ; check: hitting left or right wall?
 if (abs pxcor-of patch-ahead 1 = screen-edge-x)
 ; if so, reflect heading around x axis
 [set heading (- heading)]
 ; check: hitting top or bottom wall?
 if (abs pycor-of patch-ahead 1 = screen-edge-y)
 ; if so, reflect heading around y axis
 [set heading (180 - heading)]
end

;help procedure for drag-and-drop with mouse
to drag-drop
 ;; detects a single mouse click
 if not mouse-clicked and mouse-down?
 [
 set mouse-clicked true
 if any? turtles-at round mouse-xcor round mouse-ycor
 [set clicked-turtle random-one-of turtles-at round mouse-xcor round mouse-
ycor
]
]
 ;; if a turtle is only clicked, then it moves to match the mouse
 if is-turtle? clicked-turtle
 [ask clicked-turtle
 [setxy mouse-xcor mouse-ycor]
 if breed-of clicked-turtle = vips [set-smell-source]
]
 ;; detects raising the mouse button
 if mouse-clicked and not mouse-down?
 [set mouse-clicked false
 if is-turtle? clicked-turtle
 [set clicked-turtle nobody]
]
end

B Appendix 2: Complete NetLogo Code of Bodyguard Version 2

;Different agent types in this simulation
breeds [bodyguards vips] ; In this world we have vips and bodyguards. The vips
move around randomly. The bodyguards shall protect the vips.

;global variables
globals
[real-patches ;; patches in which to diffuse the to-diffuse variable
 border ;; patches for whom the value of t-diffuse should remain 0
 vips-movements ;; counter for the vips movements, every 10th movement make
a random turn
 mouse-clicked ;; keeps track of click-and-hold
 clicked-turtle ;; who was clicked on...
]

;patches variables
patches-own
[smell ;; the smell of each patch. the patch where the vips are on, has the maxi-
mum smell. this smell is diffused to the neighbor patches
 my-real-neighbors ;; all "valid" neighbors of a patch- no wrapping is allowed
]

;turtles variables
turtles-own [
 flockmates ;; agentset of nearby turtles
 nearest-neighbor ;; closest one of our flockmates
]

;setting up the initial situation
to setup
 ca ;; clear the screen
 ;Setup vehicles and patches
 setup-bodyguards
 setup-vips
 setup-patches

 set mouse-clicked false
 set clicked-turtle nobody
end

;creating and ditributing the bodyguard agents
to setup-bodyguards
 create-bodyguards bodyguard-count ;; create the bodyguards
 ask turtles [
 set shape "bug"
 set size agents-size
 set color green
 ;;distribute the bodyguards randomly
 fd (random screen-edge-x)

 lt random 360
]
end

;creating and distributing the vip agents
to setup-vips
 create-vips vips-count
 ask vips [
 set shape "bug"
 set size agents-size
 set color red
 ;;distribute the vips randomly
 lt random 360
 fd (random screen-edge-x)
]
end

;setting up the simulation world
to setup-patches
 ;; set the border pachtes, where no diffusion takes place
 set border patches with [abs pxcor = screen-edge-x
 or abs pycor = screen-edge-y]
 ;; set the rest of the patches, where diffusion of smell takes place
 set real-patches patches with [abs pxcor < screen-edge-x
 and abs pycor < screen-edge-y]
 ask patches [
 set my-real-neighbors neighbors with
 [abs pxcor < screen-edge-x and abs pycor < screen-edge-y]
]
 ;Color the border patches as boundary
 ask border [
 set pcolor grey
]
 ;; Call the procedure which sets the smell on the patches where the vips are on
 set-smell-source

end

;setting the smell variable on all patches with vips and distributin over neighbor
patches
to set-smell-source
 ;Reset former smell-sources
 ask real-patches [set smell 0]
 ;Setup the patches where a vip is on as the smell sources and diffuse smell
 let value 0
 ask patches with [any? vips-here] [set smell 90000]
 repeat 25 [
 diffuse smell 1.0
 without-interruption
 [ask border [

 set value (smell / (count my-real-neighbors))
 ask my-real-neighbors [set smell (smell + value)]
 set smell 0
]]
]
 ;; paint the smell if desired
 ifelse (show-smell-of-vips = true) [
 ;Color the patches according to their brightness
 ask real-patches [
 set pcolor scale-color yellow smell 0 730
]
]
 ;; if not set all real patches to black
 [ask real-patches [set pcolor black]]
end

;; run the simulation, called by NetLogo System automatically at each time step
to go
 ask turtles [
 set-heading
]
 ask turtles [
 bounce
]
 move-turtles
 set-smell-source
end

;moving the turtles forward
to move-turtles
 ask vips [
 fd vip-speed
]
 ask bodyguards [
 ifelse value-from (patch-here) [smell] > 350 and value-from (patch-here) [
smell] < 550
 [fd vip-speed]
 [fd bodyguards-speed]
]
 set vips-movements (vips-movements + 1)
end

;setting the heading of the turtles
to set-heading
 ;heading of bodyguards
 if breed = bodyguards [
 ;random heading
 if value-from (patch-here) [smell] < 5 [
 lt random 45
 rt random 45

]
 ;climb up smell gradient
 if value-from (patch-here) [smell] >= 5 and value-from (patch-here) [smell] <=
200 [set heading uphill smell]
 ;move away from nearest neighbor in a 70 degrees angle from direction to vip
 if value-from (patch-here) [smell] > 200 and value-from (patch-here) [smell]
<= 350
 [
 ;;Separation
 find-flockmates
 ifelse any? flockmates
 [find-nearest-neighbor
 ifelse patch-here != value-from (nearest-neighbor) [patch-here] [
 set flockmates vips
 let nearest-vip min-one-of flockmates [distance myself]
 let vipheadingright towards nearest-vip + 70
 let vipheadingleft towards nearest-vip - 70
 let rightpatch patch-at-heading-and-distance vipheadingright body-
guards-speed
 let leftpatch patch-at-heading-and-distance vipheadingleft bodyguards-
speed
 let distanceleft value-from (nearest-neighbor) [distance-nowrap leftpatch
]
 let distanceright value-from (nearest-neighbor) [distance-nowrap right-
patch]
 ifelse distanceleft > distanceright [set heading vipheadingleft]
 [set heading vipheadingright]
]
 [
 lt random 90
 rt random 90
]
]
 [
 set heading uphill smell
]
]
 ;align heading with vip
 if value-from (patch-here) [smell] > 350 and value-from (patch-here) [smell] <
550 [
 set flockmates vips
 let nearest-vip min-one-of flockmates [distance myself]
 set heading value-from nearest-vip [heading]
]
 ;climb down smell gradient
 if value-from (patch-here) [smell] >= 550 [set heading downhill smell]
]
 ;heading of vips
 if breed = vips [
 if remainder vips-movements 10 = 0 [

 lt random 90
 rt random 90
]
]
end

;find all bodyguards in radius of vision
to find-flockmates ;; turtle procedure
 set flockmates (bodyguards in-radius vision) with [self != myself]
end

;find the nearest flockmate
to find-nearest-neighbor ;; turtle procedure
 set nearest-neighbor min-one-of flockmates [distance myself]
end

;; this procedure checks the coordinates and makes the turtles
;; reflect according to the law that the angle of reflection is
;; equal to the angle of incidence
to bounce
 ; check: hitting left or right wall?
 if (abs pxcor-of patch-ahead 1 = screen-edge-x)
 ; if so, reflect heading around x axis
 [set heading (- heading)]
 ; check: hitting top or bottom wall?
 if (abs pycor-of patch-ahead 1 = screen-edge-y)
 ; if so, reflect heading around y axis
 [set heading (180 - heading)]
end

;help procedure for drag-and-drop with mouse
to drag-drop
 ;; detects a single mouse click
 if not mouse-clicked and mouse-down?
 [
 set mouse-clicked true
 if any? turtles-at round mouse-xcor round mouse-ycor
 [set clicked-turtle random-one-of turtles-at round mouse-xcor round mouse-
ycor
]
]
 ;; if a turtle is only clicked, then it moves to match the mouse
 if is-turtle? clicked-turtle
 [ask clicked-turtle
 [setxy mouse-xcor mouse-ycor]
 if breed-of clicked-turtle = vips [set-smell-source]
]
 ;; detects raising the mouse button

 if mouse-clicked and not mouse-down?
 [set mouse-clicked false
 if is-turtle? clicked-turtle
 [set clicked-turtle nobody]
]
end

	Title Page
	Abstract
	Contents
	List of Figures
	List of Code Examples
	1. Introduction
	2. Swarm Intelligence
	2.1 Social Insects
	2.2 Self-Organization
	2.3 Stigmergy
	2.4 An Example from Nature and its Application
	2.4.1 Ant Foraging
	2.4.2 Solving the Traveling Salesman Problem with Artificial Ants
	2.5 Telecommunication Applications
	2.6 Other Swarm-Based Applications
	2.7 Summary
	3. Bodyguard Scenario
	3.1 Scenario Details
	3.2 Simulation Environment
	3.3 Agent Behavior Rules
	3.3.1 Finding the VIP
	3.3.2 Following a VIP in a Given Distance
	3.3.3 Distributing Evenly Around (Encircling) a VIP
	3.3.4 Further Improvement of the Bodyguard Behavior
	3.3.5 Protecting More Than One VIP
	4. Results and Conclusions
	References
	Appendix 1: Complete NetLogo Code of Bodyguard Version 1
	Appendix 2: Complete NetLogo Code of Bodyguard Version 2

